

Wire Rope Isolators

WR Series

WR

Application Worksheet

APPLICATION WORKSHEET - INPUTS IMPERIAL/METRIC

	IMPERIAL	METRIC
PART I: SYSTEM DATA:		
1. Total Supported Load (W _T):	W _T = _____ lbs. W _T = _____ Kg x 9.81 = _____ N	
2. Number of Isolators (n):	n = _____	
3. Static Load per Isolator (W):	W = $\frac{W_T}{n}$	W = _____ lbs.* W = _____ N*
	* Assumes a central CG	
4. Load Axis: Compression Shear or Roll 45° Compression/Roll		Load Axis Load Axis
PART II: VIBRATION SIZING:		
1. Input Excitation Frequency	(f _i) = _____ Hz $\left(= \frac{\text{rpm}}{60} \right)$	
2. System Response Natural Frequency for 80% isolation:	f _n = $\frac{f_i}{3.0}$ = _____ Hz	
3. Maximum Isolator Vibration Stiffness: (K _v)	K _v = $\frac{W (2\pi f_n)^2}{g}$ g = 386 in/sec ² or 9.81 m/sec ²	K _v = _____ lbs./in. K _v = _____ N/m
4. Select an isolator by comparing calculated values with technical data for the desired load axis provided in tables for each isolator.		
a.) Calculated "W" must be less than the isolator's max static load and		
b.) Isolator's vibration stiffness must be less than the calculated maximum K _v		
PART III: SHOCK SIZING:		
1. Maximum Allowable Transmitted Acceleration:	A _T = _____ G's	
2. Shock Input Velocity:	V = _____ in./sec. V = _____ m/sec. V = $\sqrt{2gh}$ g = 386 in./sec. ² or 9.81 m/sec. ² h = Drop Height (in. or m)	
3. Min. Isolator Response Deflection:	D _{min} = $\frac{V^2}{g(A_T)}$	D _{min} = _____ in. D _{min} = _____ m
4. Maximum Isolator Shock Stiffness:	K _s = $\frac{W(V/D_{min})^2}{g}$	K _s = _____ lbs./in. K _s = _____ N/m
5. Select an isolator by comparing calculated values with technical data for the desired load axis provided in tables for each isolator.		
a.) Calculated "W" must be less than the isolator's max static load and		
b.) Calculated D _{min} must be less than the isolator's max deflection Note: Metric deflections are calculated in meters (m) and technical data is in millimeters (mm).		
c.) Isolator's shock stiffness must be less than calculated maximum "K _s "		
6. Check actual deflection using "K _s " from technical data to ensure that the isolator's max deflection is not exceeded.	D _{actual} = $\sqrt{\frac{V}{\frac{K_s(\text{Isolator})g}{W}}}$	D _{actual} = _____ in. D _{actual} = _____ m
7. If isolator's max deflection is exceeded, select another isolator and repeat steps 5 and 6.		